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Abstract— This paper deals with the asymptotic behaviours of the solutions of the unsteady 
boundary layer heat transfer equations governing the distributions of the stretching velocity 
and surface temperature or surface heat flux. The method to be used here is the asymptotic 
integration of second order linear differential equations.    
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I. INTRODUCTION 

The flow and heat transfer of viscous and incompressible fluid induced by a continuously moving or 
stretching surface in a quiescent fluid is relevant to many manufacturing processes. A number of technical 
processes concerning polymers involve the cooling of continuous strips or filaments by drawing them 
through a quiescent fluid. Further glass blowing, continuous casting of metals and spinning of fibers involve 
the flow due to a stretching surface. In these cases, the property of the final product depend to a great extent 
on the rate of cooling which is governed by the structure of the boundary layer near the moving strip. Crane 
[1] seemed to initiate the study of the boundary layer flow due to a stretching surface in an otherwise ambient 
fluid. Carrangher and Crane [2] investigated the heat transfer in the flow over a stretching surface in the case 
when the temperature difference between the surface and the ambient fluid is proportional to a power of 
distance from the fixed point. Similar flow and heat transfer problems were studied by researchers like Dutta 
et al. [3], Grubka and Bobba [4], Elbashbeshy [5], Lin and Chen [6], Gupta and Gupta [7], Chen and Char 
[8], Magyari and Keller [9-8], Liao and Pop [11], Na and Pop [12], Wang et al. [13], Nazar et al. [14], 
Elbashbeshy and Bazid [15].  
The objective of the present paper is to study the asymptotic behaviours of the solutions of the similarity 
boundary layer flow and heat transfer equations over a stretching sheet in a viscous and incompressible fluid 
which is at rest under the similarity conditions considered by Elbashbesy and Bazid [15]. The asymptotic 
behaviours have been studied by using some topological arguments related to the existence and uniqueness of 
the solutions, and asymptotic integrations of second order linear differential equations. The results pertaining  
to   the  existence    and    uniqueness   of   the   solutions    have   been   expressed   in   terms   of   theorems. 
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The study of the existence, uniqueness and asymptotic behaviours of the solutions of the equations governing 
the flow problems of physical significance in boundary layer theory is an interesting aspect of discussion in 
fluid mechanics. The existence and uniqueness of the solutions of the Falknar-Skan [16]  equations and their 
types, which govern various flow problems, were studied by Hartree [17], Weyl [18], Stewartson [19], 
Rosenhead [20], Hasting [21], Troy [22], Gabutti [23], Singh and Chandarki [24], etc. The study of the 
asymptotic behaviour was initiated by Hartman [28], and later extended by Singh and Kumar [26], Singh [27] 
and by various other authors. 

II. MATHEMATICAL FORMULATION 

Let us consider the unsteady flow and heat transfer of a viscous and incompressible fluid past a semi-infinite 
stretching sheet in the region  y>0 , as shown in Fig 1. 

 

Figure 1.  Physical model and co-ordinate system 
 

Keeping the origin fixed, two equal and opposite forces are suddenly applied along the  x- axis resulting in 
the stretching of the sheet and hence flow is generated. At the same time the wall temperature 푇 (푡, 푥) of the 
sheet is suddenly raised from  푇   to  푇 (푡,푥)(> 	 푇 )  or suddenly imposed a heat flux  푞 (푡, 푥)  at the wall. 
Under these assumptions, the basic unsteady boundary layer equations governing the flow and heat transfer 
due to the stretching sheet are given by 

        		+ 	= 	0                                        (2.1) 

                 		+ 	푢 		+ 	푣 	= 휗                   
 (2.2) 

   	+ 	푢 	+ 	푣	 = 훼	       
 (2.3) 

subject to the boundary  conditions 

  

⎩
⎪
⎨

⎪
⎧ 푡 < 0: 											푢 = 푣 = 0 																푇 = 푇∞ any 푥,푦
푡 > 0: 									푢 = 푢 (푡, 푥), 												푣 = 0, 								 										
푇 = 푇 (푡, 푥), = − ( , ) , 																			 										
푢 → 0, 														푇 → 푇∞ as 																																 푦 → ∞

    

 (2.4) 

where  푡	 is time;  푢, 푣  are the velocity components along   푥		 −axis and   푦		 −axis, respectively;  푇  is 
temperature;   훼   is the thermal diffusivity;  휗  is the kinematic viscosity and  휅  is thermal conductivity. 
Now we assume that the velocity of the sheet   푢 (푡,푥) , the sheet temperature   푇 (푡,푥)	, and the heat flux  
푞 	(푡,푥)	 have the following form: 

  
푢 (푡, 푥) = 	푐푥(1− 훾	푡) , 푇 (푡, 푥) = 	 푇∞ 	+ 	

(1− 훾	푡) 			

푞 (푡, 푥) = 	 (1− 훾	푡)
   

 (2.5) 

where  푐	 is the stretching rate and is a positive constant. Also  훾  is positive constant measuring the 
unsteadiness and  푞   is the characteristic heat transfer quantity. 
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We now use the following new variables: 

where  휓  is the stream function which is defined in the usual way as  푢	 = ,			푣	 = 	− 	.  

Substituting (2.6) in the equations (2.2) and (2.3), they reduce to the following ordinary differential 
equations: 

   푓′′′	+ 	 푓	 − 푓′′	 −	(퐴	+ 	푓′)푓′	 = 	0    (2.7) 

   휃 + 	푃 	(푓	 − 	퐴휂)휃 + 	푃 	(2푓 − 	3퐴)휃	 = 	0        (2.8) 

subject to the boundary conditions (2.4), which become 

  
푓(0) 	= 	0, 푓′(0) 	= 	1, 휃(0) 	= 	1

	푓′(∞) = 	0, 휃(∞) 	= 	0            (2.9) 

Let us 푝푢푡		푓	 = 휂	 − 	퐹  in (2.7), (2.8) and (2.9) to obtain 

 퐹′′′	+ 	(훼 	휂	 − 	퐹)퐹′′	+ 	(훼 		− 	퐹′)(1− 	퐹′) 	= 	0         (2.10) 

 휃′′	+ 	푃 	(훼 	휂	 − 	퐹)휃′ + 	푃 (훼 − 2퐹 )휃	 = 		0     (2.11) 

under the conditions 

  퐹(0) 	= 	퐹′(0) 	= 	0,				퐹′(∞) 	= 	1     (2.12) 

  휃	(0) 	= 	1,			휃′(∞) 	= 	0      (2.13) 

where  훼 	= 	1− ,				훼 	= 	1	 + 	퐴,			훼 	= 	1−퐴, 훼 = 	2	 − 	3퐴	. 

Here  푃   is the Prandtl number,  퐴	 =   is a non-dimensional constant measuring the flow and heat transfer 
unsteadiness, and primes denote derivatives with respect to the similarity variable  휂 . 
The equations (2.10), (2.11) together with the conditions (2.12), (2.13) govern the required problem. 

III. ASYMPTOTIC BEHAVIOUR  

For the study of asymptotic behaviour of solutions of  (2.10), (2.12) the following topological arguments are 
required: 

Lemma 3.1. Let  g,			ξ  be d−dimensional vectors and  ξ(η, g)  continuous on an open   (η, g) 		− set   Ω   
such that the solutions of the initial value problems associated with  

   g′	 = 	f(η, g)       (3.1) 

are unique. Let  Ω    be an open subset of  Ω  with the properties that all egress points from  Ω    are strict 
egress points and that the set  Ω   of egress points is not connected. Let  Ω 		 denote the set of ingress points 
of  Ω   and  S  a connected subset of  Ω ∪Ω ∪ Ω   such that  S ∩ (Ω ∪Ω )  contains two points  (η , g ),  
(η , g )  for which the solutions  g (η)  of (3.1) through  (η , g )  for  j = 1, 2  leave  Ω   with increasing  η  
at points of different connected components of  Ω  . Then there exist at least one point  η , g ∈ 		S ∩
	(Ω ∪ Ω )  such that the solution  g (η)  of (3.1) determined by  g (η ) = g   remains in  Ω    on its (open) 
right maximal interval of existence. 

Proof. The proof of the lemma (3.1) is given (Hartman [17], p.520). For the definitions of egress, ingress and 
strict egress point let us see (Hartman [17], p.37).  

Theorem 3.2. The boundary value problems (2.10), (2.12) has at least one solution  F(η)  satisfying 

 0 < 퐹 < 1, 퐹 > 0	표푛		[0,∞).       
 (3.2) 

Proof.  The proof of the theorem is based on Lemma (3.1). To this end, we rewrite the equation (2.10) in the 
system form. If we set  푔 = 퐹	, 푔 = 퐹′	, 푔 = 퐹′′′  then we have  
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푔 ′ = 푔 																																																					
푔 = 푔 																																																					
푔 = 푔 	푔 	−	 [훼 	− 	푔 ]− 휂	훼 	푔 	

     (3.3) 

Ω = {	(휂, 푔 ,푔 ,푔 ):휂, 푔 , 푔 , 푔 ∈ 	ℜ		} 

       and       Ω = {	(휂, 	푔 , 푔 , 푔 ):휂,푔 ∈ 	ℜ, 0 < 푔 < 1,푔 > 0			} 

To determine the ingress and egress points, let us introduce the following boundary sets associated with  Ω  : 

                                          	Ω = {	(휂,푔 ,푔 ,푔 ):휂	,푔 	∈ 	ℜ, 푔 = 0, 푔 > 0			} 

Ω = {	(휂,푔 ,푔 ,푔 ):휂,푔 ∈ 	ℜ, 0 < 푔 < 1,푔 = 0			} 

Ω = 	 {	(휂,푔 ,푔 ,푔 ):휂		,푔 ∈ 	ℜ, 푔 = 1,푔 > 0			} 

Ω 	= 	 {	(휂,푔 ,푔 ,푔 ):휂,푔 ∈ 	ℜ,푔 = 1,푔 = 0			} 

Ω 	= 	 {	(휂,푔 ,푔 ,푔 	):휂,푔 ∈ 	ℜ,푔 = 0,푔 = 0				} 
Here the set of ingress points is  Ω = Ω  . In fact in  Ω   we have  푔 = 0  and  푔 = 푔 ′ > 0	. 
The set of strict egress points is  Ω = Ω ∪ Ω  . This follows from  푔 = 1	, 푔 = 푔 ′ > 0		for  Ω   and 
from  푔 ′ = −(훼_2	 − 	푔_2)(1−	푔 ) < 0 , for  Ω  . 
The set  Ω    is composed of solution  푔 = 휂 + 퐶  ( 	 is constant); therefore, the points in  Ω 	  are neither 
egress nor ingress points. 
Thus  Ω   is not connected. 
For points  (휂,푔 ,푔 ,푔 ) ∈ Ω  
it holds that  푔 	(휂 ) = 푔 (휂 ) = 0	 and  푔 ′ = 	−훼  . These imply that  푔 (휂) ,  푔 (휂) < 0		if		|휂 − 휂 |  is 
small enough. Thus the solution  (푔 , 푔 , 푔 )  passing  through  (휂 ,푔 , 0, 0)  is not in  Ω . 
Now, if  푘    is a fixed number satisfying  0 < 푘 < ∞	, let us set 
                                          푆 = {(휂,푔 ,푔 ,푔 ):휂 = 0,푔 = 0,푔 = 0,푔 = 푘 }. 
Clearly,  S  is connected subset of  Ω ∪Ω ∪ Ω  . 
The point  (0, 0, 0, 푘 ) ∈ 	푆 , where  푘   is small and  positive, is a strict ingress point of  Ω   and the solution 
of (3.3) with  푔 (0) = 푔 (0) = 0,푔 (0) = 푘 	 leaves  Ω   through the component  Ω . Indeed, the solution 
of (3.3) with  푔 (0) = 푔 (0) = 0,푔 (0) = 푘 	 satisfies  푔 ′(0) = −훼   so that, by continuity of initial data, 
it follows  푔 (휂) < 0, 휂 > 0		if		푘   is sufficiently small. 
On the other hand, if  푘 > 0  is large enough, i.e. solution of (3.3) satisfying  푔_1(0) = 푔 (0) = 0,
푔 (0) = 푘   leaves  Ω   through a point in  Ω  . 
To verify this, let us note that  (휂,푔 ,푔 ,푔 ) ∈ Ω	 implies that  푔 (휂), 푔 (휂) > 0  and  0 ≤	푔 (휂) ≤ 		휂	 for 
some  휂 > 0 . Let us use it in the third equation of (3.3) and integrate to find   푔 (휂) ≥		 푘 − (훼 			+ 훼 )휂		. 
Hence if  푘   is sufficiently large and the solution of (3.3) through  (0, 0, 0,푘 )  in  Ω   on  [0,휂 	)  for some  
휂 > 0 , then  푔 (휂)	 is greater than a given positive constant  표푛		[0,휂 )		and such a solution  leaves  훺     
through  Ω .		 . 
From the Lemma (3.1), it follows then that there exists a point  0, 0, 0,푘		   in  푆 ∩	(Ω ∪ Ω )  such that the 
solution  (푔 		,푔 ,푔 )   of (3.3) with   푔 (0) = 	 푔 (0) = 	0, 푔 (0) = 푘, remains in  Ω   on its right maximal 
interval of existence. Because of the structure of  Ω  , this is necessarily  [0,∞). 
Finally, we prove that 

                                                 푙푖푚 → 		푔 (휂) = 0,		 lim → 푔 (휂) = 1.     
   (3.4) 

The first limit follows immediately by observing that if we suppose, for the purpose of obtaining a 
contradiction, that  lim

→
푔 (휂) = 퐶 ≠ 	0 , then we obtain  |푔 (휂)| > 1 , which contradicts  (휂	, 	푝 , 푝 ,푝 ) ∈

	Ω    for  휂 ∈ 	 (0,∞) . 

Analogously, let us suppose if possible, that  lim
→
	푔 (휂) = 푔 (∞)  where  0 < 푔 (∞) < 1	. The initial 

condition  푔 (휂) = 0  and structures of the sets  Ω 	, Ω , imply  푔 (휂)	푎푛푑	푔 (휂)푔 (휂) ≥ 	0	, 휂 ∈ [0,∞)	. 
The use of this and the first limit of (3.4) into the third equation of (3.3) gives 

lim
→
푔 (휂) = lim

→
[푔 (휂)푔 (휂)− {훼 	−	푔 (휂)}{1− 푔 (휂)}− 휂	훼 푔 (휂)	] 
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≥	−{훼 	−	푔 (∞)}{1− 푔 (∞)}− 훼 (∞)																	 
≠ 	0																																																																																								 

Two integrations lead to lim
→
푔 (휂) = ∞	. This contradiction completes the proof of (3.4) showing that the 

inequalities in (3.2) are true. Thus the proof of Theorem 3.1 is completed. 
Theorem 3.3 There is a unique solution  F(η)  of the boundary value problem (2.10), (2.12) such that  
F′(η) > 0	. 
Proof. Let us suppose, for the purpose of obtaining a contradiction, that there are two solutions  F (η)   and  
F (η)	 of (2.10), (2.12) such that  F (η) > 0 ,  F (η) > 0  on  (0,∞). If  F (η) ≠		F (η) , we assume 
without loss of generality that  F (η) > F (η)  on  (0,η )   and  F (η ) = F′_2(η )  where  0 < η < ∞	. 
Then (2.10) implies that  f (η) > f (η)		on		[0,η ). 
If we now define  r(η)		by		r(η) = F (η)− F (η) , we see that 

r(η), 			r (η) > 0	(0,η ), r(0) = r(η ) = 0       
 (3.5) 

Thus,  푟′(휂)  has relative maximum occurring at some point  휂 ∈ 	 (0, 휂 )  so that 
푟 (휂 ) > 0, 푟 (휂 ) = 0, 푟 (휂 ) ≤ 	0         (3.6) 

Moreover, since either  퐹    or  퐹   is the solutions of (2.10), (2.12) established by Theorem 3.1, hence from  
퐹′′(휂) > 0  on  (0,∞)  and the second inequality of (3.6) it follows that 

퐹 (휂 ) = 퐹 (휂 ) > 0, 휂 ∈ 	 (0,휂 )       
 (3.7) 

Therefore, from (2.10), we obtain 
푟′′′(휂 ) = {퐹 (휂 ) 	− 훼 	휂 }	푟′′(휂 ) + 	(훼 	+ 	1)	푟′(휂 )         3.8) 

+	{퐹 (휂 )−	퐹 (휂 )−	퐹 (휂 )}푟(휂 			) 
By using (3.5), (3.6), (3.7) and the fact that  퐹 (휂 )	, 퐹 (휂 ) > 0  into (3.8), we find that R.H.S. is positive 
whereas L.H.S. is non-positive. This proves the non-existence of  휂   and implies that  퐹 (휂) = 퐹 (휂)  on  
(0,∞) .  Furthermore, the function  푟′(휂)  which is positive on  (0, 휂 )  cannot attain maximum on  (0,∞)  
but  푟′(∞) = 퐹 (∞)− 퐹 (∞) = 0. This completes the proof of Theorem 3.2. 
Now , the asymptotic behaviours, as  휂 → ∞ , of the solutions of (2.10), (2.12) will be discussed based on the 
integrations of second order linear differential equations. 
If   퐹(휂)   is the solution of (2.10), let us put 

ℎ(휂) = 1− 퐹′(휂)         
 (3.9) 

Then  ℎ(휂)  satisfies the differential equation 
                        ℎ′′ + (훼 	휂	 − 	퐹)ℎ′ − (훼 	− 	퐹′)ℎ = 0      

 (3.10) 
Differentiating (3.10) gives\ 

                            ℎ′′′+ (훼 	휂	 − 	퐹)ℎ′′ + (훼 	− 훼 	− 	1	+ 	퐹)ℎ′ = 0     
  (3.11) 

where  ℎ′	 = 	−	퐹′′(휂) . In order to eliminate the middle term in (3.10), let us put 
																																												ℎ = 푥	푒푥푝	 − 	∫ (훼 휂	 − 	퐹)푑휂       

  (3.12) 
to obtain 

                                푥′′ − 푞(휂)푥 = 0        
 (3.12) 

where 
																																																		푞(푛) = 	+ 훼 	− 	+ (훼 	휂	 − 	퐹)        

      (3.14) 

=
1
4

(훼 휂 − 퐹) [1−
16퐹

(훼 휂 − 퐹) +
2훼 + 4훼
(훼 휂 − 퐹)  

Thus 

푞 (휂) = −
3
2퐹 +

1
2 	(훼 휂	 − 	퐹)(훼 	− 	퐹′) 

푞 (휂) =
9
4

(훼 	휂	 − 	퐹) +
3
2

(훼 		−	퐹 )(1	 −	퐹 )−
3
4

(훼 	−	퐹 )  
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Since  0 < 퐹′ < 1	, 퐹′′ > 0		and  퐹 ∼ 	1	, 퐹 ∼ 휂		as		휂 → ∞	, there is a constants  퐶′  such that for large  휂  

		
푞

푞
≤ 퐶

퐹
휂 +

1
휂 		 ,

|푞 |

푞
≤		 퐶 	

퐹
휂 	+

1
휂 	 	 

In addition  ∫ 퐹 푑휂  is absolutely convergent (since  퐹 → 	1    so that  휂 → ∞)  so that 

∫ 푑휂 < ∞				and∫ 푑휂 < ∞       

 (3.15) 
provided that 

∫ 푑휂 < ∞		         (3.16) 

It is easy to check the validity of (3.16), for an integration by parts (integrating  퐹′′  and differentiating   ) 
gives 

				퐹
휂 푑휂 	=

퐹 퐹
휂 +

퐹
휂

[(훼 	휂	 − 	퐹)퐹 + (훼 		휂	 −	퐹 )(1− 퐹 )]푑휂 

By  (2.10), the last integral is absolutely convergent and  	lim		푖푛푓	퐹′′(휂) = 0  as  휂 → ∞ . Thus (3.16) holds. 
Consequently, (3.15) holds, and thus (3.13) has a principal solution  푥(휂)  satisfying, as  휂 → ∞ , 

푥 ∼	 푐 푞 	 (휂) exp(−∫ 푞 (푠)푑푠	),        (3.17) 
where  푐 ≠ 0  is a constant, while linearly independent solution satisfy 

푥 ∼	 푐 	푞 (휂) exp(∫ 푞 (푠)푑푠) ;        (3.18) 
 (cf. Exercise XI 9.6 Hartman [17], p. 382). 
From the last part of (3.14) and  퐹 ∼ 휂 , 

푞 	(휂) =
1
2		

(훼 	휂	 − 	퐹) −
3퐹

2(훼 	휂	 − 	퐹) 	+ 	
훼 	+ 2	훼

2(훼 	휂	 − 	퐹) 	+ 	표
1
휂  

푞 (휂) ∼	
1
2

(훼 	− 	1)휂 		 
 hence 

푞 	(휂)푑휂 		=
1
2

(훼 	휂	 − 	퐹)푑휂 	+
3
2 log(훼 	휂	 − 	퐹) 	+ 	(2훼 	− 훼 )

푑휂
훼 	휂	 − 	퐹 			+ 푐 	+ 표(1) 

where  푐   is a constant. 
Thus (3.17), (3.18) become 

푥 ∼ 	푐 휂 exp −
1
2

(훼 	휂	 − 	퐹)푑휂 , 

푥 ∼ 	푐 	휂 exp
1
2

(훼 	휂	 − 	퐹)푑휂 	 . 

In view of (3.12) , the equation  (3.10) has a principal solution satisfying 
ℎ ∼ 	푐 	휂 exp −∫ 1− 휂	 − 	퐹 푑휂 , 푐 ≠ 	0      

 (3.19) 
while the linearly independent solution satisfy 

ℎ ∼ 	 푐 	휂 ,			푐 ≠ 	0,         (3.20) 
as  휂 → ∞ . 
By treating (3.11) as a second order equation for  h'  in the same way that (3.10) was handled, it is seen that 
(3.11) has the principal solutions satisfying, as  휂 → ∞ , 

ℎ = 푐 휂 exp −∫ 1− 휂	 − 	퐹 푑휂 , 푐 ≠ 	0,      (3.21) 
and the linearly independent solutions satisfy 
																																														ℎ = 푐 휂 , 푐 ≠ 	0,       

 (3.22) 
as  휂 → ∞ . 
If (3.9) satisfies (3.19), then since  퐹 ∼ 휂 , it follows that  ∫ ℎ휂	푑휂 < ∞  ; thus 

																							퐹 = 휂 + 푐 + 표(1), 1−
퐴
2 휂	 − 	퐹 푑휂 	= 	 −

퐴휂
2 	−	푐 휂 + 푐 + 표(1), 

as  푛 → ∞ . 
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Substituting this into (3.19), (3.21) gives 
																																											1− 퐹 ∼	 푐 휂 exp − −	푐 휂 	 , 퐹 ∼ 휂(1−퐹′),     

 (3.23) 
as  휂 → ∞  where  푐 > 0 ,  푐  are the constants. 
Similarly, from (3.20),  (3.22) we obtain 
																																														1−퐹 ∼	 푐 휂 , 퐹 ∼ 휂 (1−퐹′),       

  (3.24) 
as  휂 → ∞ . 
Similarly based on the Exercise XI 9.6 of (Hartman [17], P.382), the equation (2.11) has the principal solution satisfying 

휃 ∼ 	푐 휂 ( ) exp − ( 	 	 ) 	−	푃 	푐 	휂 	 , 푐 ≠ 	0,     (3.25) 
and the linearly independent solutions satisfy 

																																													휃 ∼ 	 푐 휂 ( )	, 푐 ≠ 	0,       
 (3.26) 

   as  휂 → ∞ . 

IV. RESULTS 

The study  of the asymptotic behaviour of the solutions of similarity boundary layer equations, as the 
independent variable  휂   tends to infinity; is of tremendous significance in fluid mechanics. If any particular 
solution is either zero, or infinitesimally small or is bounded for 휂	 → ∞  it will show asymptotic character. 
The results pertaining to the asymptotic behaviours of the principal and linearly independent solutions can be 
studied based on the criteria  1	 − 	퐹 ′ → 	0, 퐹 ′′ → 	0		and  휃 → 	0 as  휂 → ∞. We impose any one of these 
conditions, as the case may be, on the LHS of the solutions and see whether or not has the RHS same kind of 
behaviour as  휂 → ∞.  If it is so, that particular solution will exhibit asymptotic character as  휂 → ∞,  
otherwise not. 
Basin on the criteria that  1	 − 	퐹 ′ → 	0 as → ∞ , we observe that the independent solutions (3.20), (3.22) will 
exhibit asymptotic behaviour as   휂 → ∞  whereas the principal solutions will not. As (3.20), (3.22) together 
lead to (3.24), the results in (3.24) will also show asymptotic behaviour as → ∞ . Likewise (3.19), (3.21) lead 
to (3.23). So the solution in (3.23) will not show asymptotic behaviour as  휂 → ∞ . 
To study the asymptotic behaviour of the solutions (3.25), (3.26) we take the criteria  휃 → 		0 as   휂 → ∞  into 
account. From (3.25) it is obvious that it will behave asymptotically as     휂 → ∞.   If  0 < A <1 , but (3.26) 
will not. For  퐴 > 1  it will happen other way round. For   퐴	 > 1 ,  the independent solution (3.26) exhibits 
asymptotic behaviour as   휂 → ∞  whereas (3.25) do not. 

V. CONCLUDING REMARKS 

The asymptotic integration method to find out the solutions of non-linear boundary layer equations is the 
corner-stone of applied mathematics. This is the method to find the approximate solutions velocity and 
temperature profile for very large values of the independent variables. One of the other corner - stones of 
applied Mathematics is scientific computing and it is interesting to note that these two subjects have been 
grown together. However, this is not unexpected given their respective capabilities. By using computers, one 
is capable of solving problems that are non- linear, non-homogeneous and multi-dimensional. Moreover, it is 
possible to achieve very high accuracy. The drawbacks are that, the computer solutions do not provide much 
insight into the physics of the problem, particularly for those which do not have access to the appropriate 
software or computer, and there is always a question as to whether or not is the computer solution correct. On 
the other hand, the asymptotic integration methods are also capable of finding the solutions of non-linear, 
non-homogeneous and multi dimensional problems. So the main objective behind the paper concerned is to 
provide reasonable, accurate expression for the solution for large values of  η.   By doing this one is able to 
derive an understanding of the physics of the problem.   
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